Langkah Langkah Menyelesaikan Nilai Mutlak
Dalam menyelesaikan dari persamaan nilai mutlak yang mengandung dalam menghitung antara jarak pada suatu angka dan mengukur jarak x dari nol dengan nilai riel, maka bisa ditemukan dalam kondisi batasan sehingga dapat selesaikan dari berbagai jenis-jenis pertidakan nya melalui cara evaluasi.
Langkah 1Â adalah dengan cara Evaluasi pada bentuk pertidaksamaan dengan nilai mutlak yang sudah dinotasikan dengan X
Maka salah satu nya adalah sebagai berikut :
x < a atau x> a x±a < b atau x±a > b ax2+bx- < c
pada fokusnya ialah dengan bentuk f(x) – < a dan f(x)> a atau f- (x) berupa fungsi yang kosntanta.
Langkah 2Â merupakan dengan cara dapat mengubah pertidaksamaan nilai mutlak dengan menjadi pertidaksamaan yang biasa dengan pertidaksamaan -x < 3 atau dengan x < -3
Contohnya
- x−3>5 jadi – (x+ 3) > 5 atau x-3 > 5
- 3x+2 < 5 jadi – (3x-2) < 5 atau 3x-2 < 5
Langkah 3Â merupakan dengan cara nilai x seperti angka negatif untuk menyendirikan -x ke salah satu sisi.
Contohmya
- jika dalam membagi dari kedua sisi misal -1+ -x > 5 menjadi x <+5
Langkah 5Â merupakan dengan cara untuk himpunan dengan penyelesaian dari nilai x dengan jangkauan nilai yang sering mempunyai dua penyelesaian.
Perhatikan pada contoh di bawah ini:
- 7-3 < x < 1
- 7-3+1)