Mean, Median, Modus, dan Cara Menghitungnya

Dalam matematika, kita akan menemukan istilah mean, median, dan modus dalam penyajian data. Penyajian data merupakan hasil dari penelitian, pengamatan atau observasi.

Data yang diperoleh dari hasil pengamatan akan disusun dan disajikan dalam bentuk bilangan-bilangan pada sebuah diagram, daftar, tabel, dan hal tersebut dinamakan dengan statistik.

Statistik adalah kesimpulan fakta berbentuk bilangan, yang disusun dalam beragam bentuk untuk menggambarkan suatu hal maupun kejadian/peristiwa. Statistik juga bisa melambangkan ukuran dari sekumpulan data, dan wakil dari data tersebut.

Ukuran pemusatan data adalah nilai yang diperoleh dari sekumpulan data yang dapat digunakan untuk mewakili seluruh data tersebut. Ukuran pemusatan data terdiri dari, mean (rerata), median, dan modus.

Apa Itu Mean, Median, Modus, dan Bagaimana Cara Menghitungnya?

1. Modus

Modus adalah data yang paling sering muncul. Modus merupakan ukuran pemusatan untuk menyatakan fenomena yang paling banyak terjadi. Sekumpulan data yang diperoleh, memungkinkan untuk memiliki nilai modus yang tidak tunggal atau mungkin juga tidak memilikinya.

Contoh:
Tentukan modus dari data berikut: 50, 35, 70, 90, 70, 40, 40, 40, 65, 45, 70, 80,

Baca Juga:  Mengenal Rumah Joglo Rumah Adat Provinsi Jawa Tengah

Penyelesaian:
Urutkan data terlebih dahulu, sehingga menjadi:

35, 40, 40, 40, 45, 50, 65, 70, 70, 70, 80, 90

Kita mengetahui bahwa nilai 40 berjumlah 3, dan nilai 70 berjumlah 3, maka modus dari data tersebut adalah nilai 40, dan 70.

- Iklan -

2. Mean (Rata-rata)

Mean adalah salah satu ukuran gejala pusat. Mean dapat dikatakan sebagai wakil kumpulan data. Menentukan mean dapat dilakukan dengan cara menjumlahkan seluruh nilai data, kemudian membaginya dengan banyaknya data.

Jumlah seluruh data: banyak data atau, dapat dirumuskan dengan:
𝑥̅ = ∑ x / n

Keterangan:
𝑥̅ = rerata atau mean
n = banyaknya data
∑ x = jumlah seluruh data

Contoh:
Hitung rerata atau mean dari data berikut: 6, 5, 9, 7, 8, 8, 7, 6.

Penyelesaian:
𝑥̅ = 5 + 6 + 6 + 7 + 7 + 8 + 8 + 9 : 8
= 56 : 8
= 7, maka mean dari bilangan tersebut adalah 7.

3. Median (Kuartil)

Median (Me) atau kuartil adalah nilai tengah dari sekumpulan data setelah diurutkan dari data yang terkecil sampai data terbesar, maupun sebaliknya. Apabila suatu data mempunyai median, maka mediannya tunggal.

Baca Juga:  Penyebab Terjadinya Pergerakan Lempeng Tektonik

Jika banyak data merupakan bilangan ganjil, maka median terletak pada data ke ½ (n + 1), dan jika banyak data bilangan genap maka median terletak – n/2 dan data – n/2 + 1.

Contoh 1
Tentukan median dari data berikut: 70, 65, 50, 40, 35, 45, 70, 80, 90. Diketahui bahwa banyak data yang tersedia merupakan bilangan ganjil.

Setelah diurutkan datanya menjadi: 35, 40 , 45, 50, 65, 70, 70, 80, 90
Jadi mediannya adalah = 65.

Contoh 2
Tentukan median dari data berikut: 3, 2, 5, 2, 4, 6, 6, 7, 9, 6.

Pada contoh ini banyak data yang tersedia merupakan bilangan genap, median akan terletak di antara dua buah data.

Setelah diurutkan: 2, 2, 3, 4, 5, 6, 6, 6, 7, 9.
Me = (5 + 6): 2= 5,5.

Maka, median yang terletak dari data tersebut adalah 5,5.

 

Bagikan:

BERITA TERKAIT

REKOMENDASI

BERITA TERBARU